题目内容
(2012•广东)已知函数(其中ω>0,x∈R)的最小正周期为10π.(1)求ω的值;(2)设,,,求cos(α+β)的值.
(1) (2)
解析
扇形AOB的周长为8 cm.(1)若这个扇形的面积为3 cm2,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.
(13分)(2011•重庆)设函数f(x)=sinxcosx﹣cos(x+π)cosx,(x∈R)(I)求f(x)的最小正周期;(II)若函数y=f(x)的图象按=(,)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,]上的最大值.
如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙、的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?
已知函数.(1)当A=1时,求f(x)的单调递增区间;(2)当A>0,且x∈[0,π]时,f(x)的值域是[3,4],求A,b的值.
已知角的终边过点.(1)求的值;(2)若为第三象限角,且,求的值.
电流强度I与时间t的关系式 。(1)在一个周期内如图所示,试根据图象写出的解析式;(2)为了使中t在任意一段秒的时内I能同时取最大值|A|和最小值-|A|,那么正整数的最小值为多少?
已知函数的图象过点.(1)求实数的值; (2)求函数的最小正周期及最大值.
已知向量, 设函数. (1)求f (x)的最小正周期. (2)求f (x)在上的最大值和最小值.