ÌâÄ¿ÄÚÈÝ

£¨2012•ÉϺ£¶þÄ££©ÒÑÖªxÖáÉϵĵãA1£¬A2¡­£¬AnÂú×ã
.
AnAn+1
=
1
2
.
An-1An
£¨n¡Ý2£¬n¡ÊN*£©£¬ÆäÖÐA1£¨1£¬0£©£¬A2£¨5£¬0£©£»µãB1£¬B2£¬¡­Bn£¬¡­ÔÚÉäÏßy=x£¨x¡Ý0£©ÉÏ£¬Âú×ã|
.
OBn+1
|=|
.
OBn
|+2
2
 £¨n¡ÊN*£©£¬ÆäÖÐB1£¨3£¬3£©£®
£¨1£©ÓÃn±íʾµãAnÓëBnµÄ×ø±ê£»
£¨2£©ÉèÖ±ÏßAnBnµÄбÂÊΪkn£¬Çó
lim
n¡ú¡Þ
kn掙术
£¨3£©ÇóËıßÐÎAnAn+1Bn+1BnÃæ»ýSµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©¸ù¾Ý
.
AnAn+1
=
1
2
.
An-1An
£¬¿ÉµÃxn+1-xn=
1
2
(xn-xn-1)
£¬´Ó¶ø¿ÉµÃ{xn-xn-1}ÊÇÒÔ4ΪÊ×Ï
1
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ»ÀûÓÃÉäÏßy=x£¨x¡Ý0£©ÉÏ£¬Âú×ã|
.
OBn+1
|=|
.
OBn
|+2
2
 £¨n¡ÊN*£©£¬¿ÉµÃ{xn}ÊÇÒÔ3ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÓÉ´Ë¿ÉÓÃn±íʾµãAnÓëBnµÄ×ø±ê£»
£¨2£©È·¶¨Ö±ÏßAnBnµÄбÂÊΪkn=
2n+1
2n-8+24-n
£¬´Ó¶ø¿ÉÇó
lim
n¡ú¡Þ
kn掙术
£¨3£©ËıßÐÎAnAn+1Bn+1BnÃæ»ýS=
1
2
£¨9-23-n£©£¨2n+3£©-
1
2
(9-24-n)(2n+1)
=(n-
1
2
)¡Á23-n+9
£¬È·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶ø¿ÉÇóËıßÐÎAnAn+1Bn+1BnÃæ»ýSµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬xn+1-xn=
1
2
(xn-xn-1)

¡ßA1£¨1£¬0£©£¬A2£¨5£¬0£©£¬¡àx2-x1=4
¡à{xn-xn-1}ÊÇÒÔ4ΪÊ×Ï
1
2
Ϊ¹«±ÈµÄµÈ±ÈÊýÁÐ
¡àxn-xn-1=4¡Á(
1
2
)n-1

¡àxn=x1+£¨x2-x1£©+¡­+£¨xn-xn-1£©=1+4+¡­+4¡Á(
1
2
)
n-1
=9-24-n
¡àAn£¨9-24-n£¬0£©£»
¡ßÉäÏßy=x£¨x¡Ý0£©ÉÏ£¬Âú×ã|
.
OBn+1
|=|
.
OBn
|+2
2
 £¨n¡ÊN*£©£¬
¡à
2
xn+1=
2
xn
+2
2

¡àxn+1-xn=2
¡ßB1£¨3£¬3£©£®
¡à{xn}ÊÇÒÔ3ΪÊ×Ï2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡àxn=2n+1
¡àBn£¨2n+1£¬2n+1£©£»
£¨2£©ÉèÖ±ÏßAnBnµÄбÂÊΪkn=
2n+1
2n-8+24-n
£¬¡à
lim
n¡ú¡Þ
kn=
lim
n¡ú¡Þ
2n+1
2n-8+24-n
=1£»
£¨3£©ËıßÐÎAnAn+1Bn+1BnÃæ»ýS=
1
2
£¨9-23-n£©£¨2n+3£©-
1
2
(9-24-n)(2n+1)
=(n-
1
2
)¡Á23-n+9

Éèan=(n-
1
2
)¡Á23-n+9
£¬Ôòan+1=(n+
1
2
)¡Á22-n+9

¡ßan+1-an=[(n+
1
2
)¡Á22-n+9
]-[(n-
1
2
)¡Á23-n+9
]=
3-2n
4
¡Á23-n

¡àa2£¾a1£¬a2£¾a3£¾a4£¾a5£¾¡­
¡àa2×î´ó£¬Îª12
¡àËıßÐÎAnAn+1Bn+1BnÃæ»ýSµÄÈ¡Öµ·¶Î§Îª£¨-¡Þ£¬12]£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÖ¤Ã÷£¬¿¼²éÊýÁÐͨÏîµÄÇó½â£¬¿¼²éËıßÐÎÃæ»ýµÄ¼ÆË㣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø