题目内容
过正方形ABCD的顶点A,引PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是( ).
A.30° B.45° C.60° D.90°
B
【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为=,故所求的二面角的大小是45°.
法二:将其补成正方体.如图(2),不难发现平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小为45°.
练习册系列答案
相关题目
某种产品的广告费支出x与销售额y之间有如下对应数据(单位:百万元).
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | t | 70 |
根据上表提供的数据,求出y关于x的线性回归方程为 =6.5x+17.5,则表中t的值为________.