题目内容

设二元一次不等式组
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是(  )
A、[1,3]
B、[2,
10
]
C、[2,9]
D、[
10
,9]
分析:先依据不等式组
x+2y-19≥0
x-y+8≥0
2x+y-14≤0
,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用函数y=ax(a>0,a≠1)的图象特征,结合区域的角上的点即可解决问题.
解答:精英家教网解析:平面区域M如如图所示.
求得A(2,10),C(3,8),B(1,9).
由图可知,欲满足条件必有a>1且图象在过B、C两点的图象之间.
当图象过B点时,a1=9,
∴a=9.
当图象过C点时,a3=8,
∴a=2.
故a的取值范围为[2,9=.
故选C.
点评:本题主要考查了用平面区域二元一次不等式组、指数函数的图象与性质,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网