题目内容

正三棱柱ABCA1B1C1的底面边长为a,侧棱长为a.

(1)建立适当的坐标系,并写出ABA1C1的坐标;
(2)求AC1与侧面ABB1A1所成的角.
(1) A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a) ,(2) AC1与侧面ABB1A1所成的角为30°
 (1)以点A为坐标原点O,以AB所在直线为Oy轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.
由已知,得A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a).
(2)取A1B1的中点M,于是有M(0,a),连AMMC1
=(-a,0,0),且=(0,a,0),=(0,0a)
由于·=0,·=0,所以MC1⊥面ABB1A1
AC1AM所成的角就是AC1与侧面ABB1A1所成的角.
=



所以所成的角,即AC1与侧面ABB1A1所成的角为30°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网