题目内容

如图,在正方体中,分别为的中点,则异面直线所成的角等于       

试题分析:取A1B1的中点E,由三角形的中位线的性质可得∠EGH或其补角即为异面直线A1B与GH所成的角.判断△EGH为等边三角形,从而求得异面直线A1B与GH所成的角的大小.解:取A1B1的中点E,则由三角形的中位线的性质可得GE平行且等于A1B的一半,故∠EGH或其补角即为异面直线A1B与GH所成的角.设正方体的棱长为1,则EG=,A1B==GH=EH,故△EGH为等边三角形,故∠EGH=60°。
点评:本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角,是解题的关键,体现了等价转化的数学思想,属于中档题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网