题目内容
(2013•广东)给定区域D:
.令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定
|
6
6
条不同的直线.分析:先根据所给的可行域,利用几何意义求最值,z=x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最值即可,从而得出点集T中元素的个数,即可得出正确答案.
解答:
解:画出不等式表示的平面区域,如图.
作出目标函数对应的直线,因为直线z=x+y与直线x+y=4平行,故直线z=x+y过直线x+y=4上的整数点:(4,0),(3,1),(2,2),(1,3)或(0,4)时,直线的纵截距最大,z最大;
当直线过(0,1)时,直线的纵截距最小,z最小,从而点集T={(4,0),(3,1),(2,2),(1,3),(0,4),(0,1)},经过这六个点的直线一共有6条.
即T中的点共确定6条不同的直线.
故答案为:6.

作出目标函数对应的直线,因为直线z=x+y与直线x+y=4平行,故直线z=x+y过直线x+y=4上的整数点:(4,0),(3,1),(2,2),(1,3)或(0,4)时,直线的纵截距最大,z最大;
当直线过(0,1)时,直线的纵截距最小,z最小,从而点集T={(4,0),(3,1),(2,2),(1,3),(0,4),(0,1)},经过这六个点的直线一共有6条.
即T中的点共确定6条不同的直线.
故答案为:6.
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关题目