题目内容
如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.(1)求证:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.
分析:(1)欲证面MAP⊥面SAC,根据面面垂直的判定定理可知在平面MAP内一直线与平面SAC垂直,根据线面垂直的判定定理可知BC⊥平面SAC,
而PM∥BC,从而PM⊥面SAC,满足定理所需条件;
(2)易证面MAP⊥面SAC,则AC⊥CM,AC⊥CB,从而∠MCB为二面角M-AC-B的平面角,过点M作MN⊥CB于N点,连接AN,在△CAN中,由勾股定理求得AN,在Rt△AMN中求出MN,在Rt△CNM中,求出此角即可.
而PM∥BC,从而PM⊥面SAC,满足定理所需条件;
(2)易证面MAP⊥面SAC,则AC⊥CM,AC⊥CB,从而∠MCB为二面角M-AC-B的平面角,过点M作MN⊥CB于N点,连接AN,在△CAN中,由勾股定理求得AN,在Rt△AMN中求出MN,在Rt△CNM中,求出此角即可.
解答:证明:(1)∵SC⊥平面ABC,SC⊥BC,又∵∠ACB=90°
∴AC⊥BC,AC∩SC=C,BC⊥平面SAC,
又∵P,M是SC、SB的中点
∴PM∥BC,PM⊥面SAC,∴面MAP⊥面SAC,(5分)
(2)∵AC⊥平面SAC,∴面MAP⊥面SAC.(3分)
∴AC⊥CM,AC⊥CB,从而∠MCB为二面角M-AC-B的平面角,
∵直线AM与直线PC所成的角为60°
∴过点M作MN⊥CB于N点,连接AN,
则∠AMN=60°在△CAN中,由勾股定理得AN=
.
在Rt△AMN中,AM=
=
•
=
.
在Rt△CNM中,tan∠MCN=
=
=
=
故二面角M-AC-B的正切值为
.(5分)
∴AC⊥BC,AC∩SC=C,BC⊥平面SAC,
又∵P,M是SC、SB的中点
∴PM∥BC,PM⊥面SAC,∴面MAP⊥面SAC,(5分)
(2)∵AC⊥平面SAC,∴面MAP⊥面SAC.(3分)
∴AC⊥CM,AC⊥CB,从而∠MCB为二面角M-AC-B的平面角,
∵直线AM与直线PC所成的角为60°
∴过点M作MN⊥CB于N点,连接AN,
则∠AMN=60°在△CAN中,由勾股定理得AN=
2 |
在Rt△AMN中,AM=
AN |
tan∠AMN |
2 |
| ||
3 |
| ||
3 |
在Rt△CNM中,tan∠MCN=
MN |
CN |
MN |
CN |
| ||||
1 |
| ||
3 |
故二面角M-AC-B的正切值为
| ||
3 |
点评:本题考查平面与平面垂直的判定,二面角及其度量,考查空间想象能力,逻辑思维能力,计算能力,是中档题.
练习册系列答案
相关题目