题目内容
8.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C:ρsin2θ=8cosθ与直线l:$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数)相交于P,Q两点,则|PQ|=$\frac{32}{3}$.分析 曲线C:ρsin2θ=8cosθ,即ρ2sin2θ=8ρcosθ,化为直角坐标方程,把直线l参数方程代入上述方程可得:3t2-16t-64=0,利用|PQ|=|t1-t2|即可得出.
解答 解:曲线C:ρsin2θ=8cosθ,即ρ2sin2θ=8ρcosθ,化为y2=8x.
把直线l:$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数)代入上述方程可得:3t2-16t-64=0,
解得t1=-$\frac{8}{3}$,t2=8.
∴|PQ|=|t1-t2|=$|-\frac{8}{3}-8|$=$\frac{32}{3}$.
故答案为:$\frac{32}{3}$.
点评 本题考查了极坐标方程化为直角坐标方程、直线参数方程的应用、直线与抛物线相交弦长问题,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.设b、c、m是空间色三条不同直线,α、β、γ是空间的三个不同平面,在下面给出的四个命题中,正确的命题是( )
A. | 若b⊥m,c⊥m,则b∥c | B. | m∥a,α⊥β,则m⊥β | C. | 若b⊥α,c∥α,则b⊥c | D. | 若β⊥α,γ⊥β,则γ∥α |
3.在一批棉花中抽测了60根棉花的纤维长度,结果如下(单位:mm)
作出这个样本的频率分布直方图(在对样本数据分组时,可试用不同的分组方式,然后从中选择一种较为适合的分组方法).棉花的纤维长度是棉花质量的重要指标,你能从图中分析出这批棉花的质量状况吗?
82 | 202 | 352 | 321 | 25 | 293 | 293 | 86 | 28 | 206 |
323 | 355 | 357 | 33 | 325 | 113 | 233 | 294 | 50 | 296 |
115 | 236 | 357 | 326 | 52 | 301 | 140 | 328 | 238 | 358 |
58 | 255 | 143 | 360 | 340 | 302 | 370 | 343 | 260 | 303 |
59 | 146 | 60 | 263 | 170 | 305 | 380 | 346 | 61 | 305 |
175 | 348 | 264 | 383 | 62 | 306 | 195 | 350 | 265 | 385 |
20.若存在实数a,对任意实数x∈[0.m],均有(sinx-a)(cosx-a)≤0,则实数m的最大值是( )
A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{4}$ |
18.若x<0,则5+4x+$\frac{3}{x}$的最大值为( )
A. | 5+4$\sqrt{3}$ | B. | 5±4$\sqrt{3}$ | C. | 5-4$\sqrt{3}$ | D. | 以上都不对 |