题目内容

已知在(
3x
-
3
3x
n的展开式中,第6项为常数项.
(1)求n;
(2)求含x2的项的系数;
(3)求展开式中所有的有理项.
(1)通项公式为
Tr+1=Cnrx
n-r
3
(-3)rx-
r
3
=Cnr(-3)rx
n-2r
3

∵第6项为常数项,
∴r=5时,有
n-2r
3
=0,
∴n=10.
(2)令
n-2r
3
=2,
得r=
1
2
(n-6)=2,
∴所求的系数为C102(-3)2=405.

(3)根据通项公式,由题意,得
10-2r
3
∈Z
0≤r≤10
r∈N

10-2r
3
=k(k∈Z),则10-2r=3k,r=5-
3
2
k.
∵r∈N,∴k应为偶数.故k可取-2,0,2,即r可取2,5,8,
所以第3项、第6项、第9项为有理项,它们分别为:C102(-3)2x2、C105(-3)5、C108(-3)8x-2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网