题目内容

(2013•闵行区二模)设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,则f(2)的最大值为
14
14
分析:通过已知条件求出a、b满足的不等式,求出f(2)的表达式,利用不等式的基本性质求解即可.
解答:解:因为f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,
所以1≤a-b≤2,…①,
2≤a+b≤4,…②,
由②×3+①可得:5≤4a+2b≤14
又f(2)=4a+2b,
所以f(2)的最大值为:14.
故答案为:14.
点评:本题考查不等式的基本性质的应用,也可以利用线性规划解答本题,由于a、b是互相影响与制约的,不可以求出a、b的范围来解答,会使范围扩大,是易错点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网