题目内容

如图,动点P在正方体ABCD—A1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面交于M、N,设BP=x,MN=y,则函数的图象大致是

B

解析只有当P移动到正方体中心O时,MN有唯一的最大值,则淘汰选项A、C;P点移动时,x与y的关系应该是线性的,则淘汰选项D.
解:设正方体的棱长为1,显然,当P移动到对角线BD1的中点O时,函数y=MN=AC=取得唯一最大值,所以排除A、C;当P在BO上时,分别过M、N、P作底面的垂线,垂足分别为M1、N1、P1
则y=MN=M1N1=2BP1=2?xcos∠D1BD=2?是一次函数,所以排除D.
故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网