题目内容
已知函数f(x)=xln(ax)+ex-1在点(1,0)处的切线经过椭圆4x2+my2=4m的右焦点,则椭圆的离心率为( )
分析:求出函数的导函数,把x=1代入导函数求出的函数值即为切线方程的斜率,把x=1代入函数解析式中得到切点的纵坐标,进而确定出切点坐标,根据求出的斜率和切点坐标写出切线方程求得m,从而求得椭圆的离心率即可.
解答:解:由题意得:y′=ln(ax)+1+ex-1,
把x=1代入得:y′|x=1=lna+2,
即切线方程的斜率k=lna+2,
且把x=1代入函数解析式得:y=lna+1=0,即a=
,
则所求切线方程为:y-1=x,即y=x+1.
则椭圆4x2+my2=4m的焦点为(1,0)
∴c2=m-4=1,m=5
∴e=
=
故选B.
把x=1代入得:y′|x=1=lna+2,
即切线方程的斜率k=lna+2,
且把x=1代入函数解析式得:y=lna+1=0,即a=
1 |
e |
则所求切线方程为:y-1=x,即y=x+1.
则椭圆4x2+my2=4m的焦点为(1,0)
∴c2=m-4=1,m=5
∴e=
c |
a |
1 | ||
|
故选B.
点评:此题考查椭圆的简单性质、学生会利用导数求曲线上过某点切线方程的斜率,是一道基础题.
练习册系列答案
相关题目
已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分图象如图所示,则f(x)的解析式是( )
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|