题目内容

ab为常数,:把平面上任意一点

 (ab)映射为函数

   (1)证明:不存在两个不同点对应于同一个函数;

   (2)证明:当,这里t为常数;

   (3)对于属于M的一个固定值,得,在映射F的作用下,M1作为象,求其原象,并说明它是什么图象.

(1)证明见解析(2)证明见解析(3)以原点为圆心,为半径的圆.


解析:

(1)假设有两个不同的点(a,b),(c,d)对应同一函数,即相同,

对一切实数x均成立.

特别令x=0,得a=c;令,得b=d这与(a,b),(c,d)是两个不同点矛盾,假设不成立.

故不存在两个不同点对应同函数.

(2)当时,可得常数a0b0,使

=

由于为常数,设是常数.

从而.

(3)设,由此得

在映射F之下,的原象是(m,n),则M1的原象是

.

消去t得,即在映射F之下,M1的原象是以原点为圆心,为半径的圆.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网