题目内容

设函数f(x)=x|x|+bx+c(x∈R)给出下列4个命题
①当b=0时,f(x)=0只有一个实数根;
②当c=0时,y=f(x)是偶函数;
③函数y=f(x)的图象关于点(0,c)对称;
④当b≠0,c≠0时,方程f(x)=0有两个不等实数根.
上述命题中,所有正确命题的个数是(  )
分析:对于①当b=0时,f(x)=x|x|+c=0,因y=x|x|与y=-c只有一个交点,故可判断;②当c=0时,f(x)=x|x|+bx,可判断函数为奇函数;③y=f(x)的图象可由奇函数f(x)=x|x|+bx向上或向下移|c|,y=f(x)的图象与y轴交点为(0,c),故函数y=f(x)的图象关于点(0,c)对称,故可判断;④当b≠0,c≠0时,f(x)=x|x|+x+1只有一个实数根.
解答:解:①当b=0时,f(x)=x|x|+c=0,因y=x|x|与y=-c只有一个交点,故①正确;
②当c=0时,f(x)=x|x|+bx,f(-x)=-f(x),故y=f(x)是奇函数;
③y=f(x)的图象可由奇函数f(x)=x|x|+bx向上或向下移|c|,y=f(x)的图象与y轴交点为(0,c),故函数y=f(x)的图象关于点(0,c)对称,故③正确;
④当b≠0,c≠0时,f(x)=x|x|+x+1只有一个实数根.
故选C.
点评:本题的考点是命题的真假判断与应用.主要考查函数性质的判断,关键是正确理解函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网