题目内容
设函数f(x)=x|x|+bx+c(x∈R)给出下列4个命题
①当b=0时,f(x)=0只有一个实数根;
②当c=0时,y=f(x)是偶函数;
③函数y=f(x)的图象关于点(0,c)对称;
④当b≠0,c≠0时,方程f(x)=0有两个不等实数根.
上述命题中,所有正确命题的个数是( )
①当b=0时,f(x)=0只有一个实数根;
②当c=0时,y=f(x)是偶函数;
③函数y=f(x)的图象关于点(0,c)对称;
④当b≠0,c≠0时,方程f(x)=0有两个不等实数根.
上述命题中,所有正确命题的个数是( )
分析:对于①当b=0时,f(x)=x|x|+c=0,因y=x|x|与y=-c只有一个交点,故可判断;②当c=0时,f(x)=x|x|+bx,可判断函数为奇函数;③y=f(x)的图象可由奇函数f(x)=x|x|+bx向上或向下移|c|,y=f(x)的图象与y轴交点为(0,c),故函数y=f(x)的图象关于点(0,c)对称,故可判断;④当b≠0,c≠0时,f(x)=x|x|+x+1只有一个实数根.
解答:解:①当b=0时,f(x)=x|x|+c=0,因y=x|x|与y=-c只有一个交点,故①正确;
②当c=0时,f(x)=x|x|+bx,f(-x)=-f(x),故y=f(x)是奇函数;
③y=f(x)的图象可由奇函数f(x)=x|x|+bx向上或向下移|c|,y=f(x)的图象与y轴交点为(0,c),故函数y=f(x)的图象关于点(0,c)对称,故③正确;
④当b≠0,c≠0时,f(x)=x|x|+x+1只有一个实数根.
故选C.
②当c=0时,f(x)=x|x|+bx,f(-x)=-f(x),故y=f(x)是奇函数;
③y=f(x)的图象可由奇函数f(x)=x|x|+bx向上或向下移|c|,y=f(x)的图象与y轴交点为(0,c),故函数y=f(x)的图象关于点(0,c)对称,故③正确;
④当b≠0,c≠0时,f(x)=x|x|+x+1只有一个实数根.
故选C.
点评:本题的考点是命题的真假判断与应用.主要考查函数性质的判断,关键是正确理解函数.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|