题目内容
求cos55°•cos65°+cos65°•cos175°+cos55°•cos175°的值.
分析:利用积化和差化简cos55°•cos65°,把cos65°•cos175°+cos55°•cos175°公因式提取,利用和差化积,然后化简,然后再积化和差,以及诱导公式即可求出结果.
解答:解:cos55°•cos65°+cos65°•cos175°+cos55°•cos175°
=
(cos120°+cos10°)+cos175°(cos65°+cos55°)
=-
+
cos10°+2cos175°•cos60°•cos5°
=-
+
cos10°+cos175°cos5°
=-
+
cos10°+
(cos180°+cos170°)
=-
+
cos10°-
+
cos170°
=-
.
原式的值为-
.
=
1 |
2 |
=-
1 |
4 |
1 |
2 |
=-
1 |
4 |
1 |
2 |
=-
1 |
4 |
1 |
2 |
1 |
2 |
=-
1 |
4 |
1 |
2 |
1 |
2 |
1 |
2 |
=-
3 |
4 |
原式的值为-
3 |
4 |
点评:本题考查三角函数的积化和差,和差化积公式的应用,注意合理应用是化简表达式的关键,考查计算能力,是非课改地区常考题型.
练习册系列答案
相关题目