题目内容
如图,用一根铁丝折成一个扇形框架,要求框架所围扇形面积为定值S,则使用铁丝长度最小值为
- A.
- B.
- C.
- D.
D
分析:设出扇形的半径与弧长,表示出扇形的面积,利用基本不等式求出铁丝长度的最小值.
解答:设扇形的半径为r,弧长为l,由题意可知S=,2rl=4S.
如图铁丝长度为:c=2r+l≥2=4.当且仅当2r=l,即l=2时取等号.
铁丝长度最小值为:4.
故选D.
点评:本题是基础题,考查扇形的面积的求法,考查基本不等式的应用,计算能力.
分析:设出扇形的半径与弧长,表示出扇形的面积,利用基本不等式求出铁丝长度的最小值.
解答:设扇形的半径为r,弧长为l,由题意可知S=,2rl=4S.
如图铁丝长度为:c=2r+l≥2=4.当且仅当2r=l,即l=2时取等号.
铁丝长度最小值为:4.
故选D.
点评:本题是基础题,考查扇形的面积的求法,考查基本不等式的应用,计算能力.
练习册系列答案
相关题目