题目内容

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.
分析:(1)由题意知双曲线C1的焦点在x轴上,先假设方程,结合渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
,则可求双曲线的标准方程.
(2)联立方程组
x2
4
+y2=1
x=2y+m
消去x得8y2+4my+m2-4=0
,由于交于不同的两点,所以△>0.
OM
=cosθ•
OA
+sinθ•
OB
,可得
x=x1cosB+x2sinθ
y=y1cosθ+y2sinθ
代入椭圆方程,可求实数m的值.
解答:解:(1)由题意知双曲线C1的焦点在x轴上,设C1的方程为:
x2
a2
-
y2
b2
=1(a>0,b>0)

b
a
=
3
3
a2
a2+b2
(1+
3
3
)
+
1+(
3
3
)
2
a2
a2+b2
=
3
2
(1+
3
3
)

解得之:
a=
3
b=1

∴双曲线的半焦距c=2,椭圆C2方程为:
x2
4
+y2=1
…(4分)
(2)设点M(x,y)及点A(x1,y1),B(x2,y2),
直线AB的方程为:x-2y-m=0,
联立方程组
x2
4
+y2=1
x=2y+m
消去x得8y2+4my+m2-4=0
…(6分)
判断式△=16m2-32(m2-4)=16(8-m2)>0
又m>0∴0<m<2
2

y1y2=
(m2-4)
8
x1x2=(2y1+m)(2y2+m)

=4y1y2+2m(y1+y2)+m2
=
(m2-4)
2
+2m(-
m
2
)+m2=
(m2-4)
2
…(7分)
OM
=cosθ•
OA
+sinθ•
OB
,可得
x=x1cosB+x2sinθ
y=y1cosθ+y2sinθ
…(8分)
代入椭圆方程得4=x2+4y2=(x1cosθ+x2sinθ)2+4(y1cosθ+y2sinθ)2
=(x12+4y12)cos2θ+(x22+4y22)sin2θ+2sinθcosθ(x1x2+4y1y2
=4(cos2θ+sin2θ)+sin2θ•(x1x2+4y1y2
即得:sin2θ•(x1x2+4y1y2)=0…(10分)
又∵θ∈[0,2π]的任意性,知:
x1x2+4y1y2=
m2-4
2
+4×
m2-4
8
=m2-4=0

m∈(0,2
2
)

∴m=2,即满足条件的实数m的值为2   …(12分)
点评:本题主要考查椭圆的标准方程,考查直线与椭圆的位置关系,注意设而不求思想的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网