题目内容
已知f(x)是定义在[-4,4]上的奇函数,g(x)=f(x-2)+1.当x∈[-2,0)∪(0,2]时,,且g(0)=0,则方程的解的个数为 .
【答案】分析:根据f(x)是定义在[-4,4]上的奇函数,g(x)=f(x-2)+1.当x∈[-2,0)∪(0,2]时,,确定出g(x)的解析式,再根据对数函数,可的答案
解答:解:f(x)是定义在[-4,4],g(x)定义在[-2,6],=f(x-2)+1,f(x-2)=
此时x-2∈[-4,-2)u(-2,0],f(2-x)=,2-x∈[0,2)u(2,4]
设t=2-x,f(t)=,当x∈[2,4)u(4,6]时,g(x)=f(x-2)+1
此时的x-2即可整体代换前面的t
,然后因为g(0)=0=f(-2)+1,g(4)=f(2)+1=2,利用g(x)定义在[-2,6]上的解析式,及,即可得出答案为4,故答案为4.
点评:本题主要考查了函数的周期性,对称性.由于函数在不同区间的解析式不同,故要特别留意x的范围.
解答:解:f(x)是定义在[-4,4],g(x)定义在[-2,6],=f(x-2)+1,f(x-2)=
此时x-2∈[-4,-2)u(-2,0],f(2-x)=,2-x∈[0,2)u(2,4]
设t=2-x,f(t)=,当x∈[2,4)u(4,6]时,g(x)=f(x-2)+1
此时的x-2即可整体代换前面的t
,然后因为g(0)=0=f(-2)+1,g(4)=f(2)+1=2,利用g(x)定义在[-2,6]上的解析式,及,即可得出答案为4,故答案为4.
点评:本题主要考查了函数的周期性,对称性.由于函数在不同区间的解析式不同,故要特别留意x的范围.
练习册系列答案
相关题目