题目内容
数列{an}中,已知a1=-2,a2=-1,a3=1,若对任意正整数n,有anan+1an+2an+3=an+an+1+an+2+an+3,且an+1an+2an+3≠1,则该数列的前2010 项和S2010=( )A.2010
B.-2011
C.-2010
D.-2008
【答案】分析:分别表示出anan+1an+2an+3=an+an+1+an+2+an+3,an+1an+2an+3an+4=an+1+an+2+an+3+an+4,两式相减可推断出an+4=an,进而可知数列{an}是以4为周期的数列,只要看2010是3的多少倍,然后通过a1=-2,a2=-1,a3=1求得a4,而2010是4的502倍余2,故可知S2010=502×(-2-1+1-2)+a1+a2答案可得.
解答:解:依题意可知,anan+1an+2an+3=an+an+1+an+2+an+3,an+1an+2an+3an+4=an+1+an+2+an+3+an+4,
两式相减得an+1an+2an+3(an+4-an)=an+4-an,
∵an+1an+2≠1,
∴an+4-an=0,即an+4=an,
∴数列{an}是以4为周期的数列,
∵a1a2a3a4=a1+a2+a3+a4∴a4=-2
∴S2010=502×(-2-1+1-2)+a1+a2=-2011
故选B
点评:本题主要考查了数列的递推式和数列的求和问题.本题的关键是找出数列的周期性,属于中档题.
解答:解:依题意可知,anan+1an+2an+3=an+an+1+an+2+an+3,an+1an+2an+3an+4=an+1+an+2+an+3+an+4,
两式相减得an+1an+2an+3(an+4-an)=an+4-an,
∵an+1an+2≠1,
∴an+4-an=0,即an+4=an,
∴数列{an}是以4为周期的数列,
∵a1a2a3a4=a1+a2+a3+a4∴a4=-2
∴S2010=502×(-2-1+1-2)+a1+a2=-2011
故选B
点评:本题主要考查了数列的递推式和数列的求和问题.本题的关键是找出数列的周期性,属于中档题.
练习册系列答案
相关题目