题目内容

证明下列不等式:
(1)对任意的正实数a,b,有
1
1+a
1
1+b
-
a-b
(1+b)2

(2)
C
0
n
50
50+1
+
C
1
n
51
51+1
+
C
2
n
52
52+1
+…+
C
n
n
5n
5n+1
2n5n
3n+5n
,n∈N.
分析:(1)利用作差法证明即可;
(2)令a=
1
5k
,可知
1
1+
1
5k
1
1+b
-
1
5k
-b
(1+b)2
(k=0,1,2,…,n)⇒
n
k=0
C
k
n
1
1+
1
5k
n
k=0
C
k
n
1
1+b
-
n
k=0
1
5k
-b
(1+b)2
,利用组合数的性质可证得右端=
2n
1+b
-
1
(1+b)2
[(1+
1
5
)
n
-b•2n],再令b=(
3
5
)
n
,可证左端
n
k=0
C
k
n
1
1+
1
5k
2n
1+
3n
5n
-
1
(1+
3n
5n
)
2
[(1+
1
5
)
n
-(
6
5
)
n
]=
2n
1+
3n
5n
=
2n•5n
5n+3n
,从而可使结论得证.
解答:证明:(1)∵
1
1+a
-
1
1+b
+
a-b
(1+b)2
=
b-a
(1+a)(1+b)
+
a-b
(1+b)2
=
(b-a)2
(1+a)(1+b)2

∵a>0,b>0,
(b-a)2
(1+a)(1+b)2
≥0,
1
1+a
1
1+b
-
a-b
(1+b)2

(2)令a=
1
5k
,k=0,1,2,…,n.由(1)得:
1
1+
1
5k
1
1+b
-
1
5k
-b
(1+b)2
,k=0,1,2,…,n
C
k
n
1
1+
1
5k
C
k
n
1
1+b
-
C
k
n
1
5k
-b
(1+b)2
,k=0,1,2,…,n
n
k=0
C
k
n
1
1+
1
5k
n
k=0
C
k
n
1
1+b
-
n
k=0
1
5k
-b
(1+b)2

=
1
1+b
n
k=0
C
k
n
-
1
(1+b)2
n
k=0
C
k
n
1
5k
-b)
=
2n
1+b
-
1
(1+b)2
n
k=0
C
k
n
1
5k
-b
n
k=0
C
k
n

=
2n
1+b
-
1
(1+b)2
[(1+
1
5
)
n
-b•2n],
令b=(
3
5
)
n

n
k=0
C
k
n
1
1+
1
5k
2n
1+
3n
5n
-
1
(1+
3n
5n
)
2
[(1+
1
5
)
n
-(
6
5
)
n
]=
2n
1+
3n
5n
=
2n•5n
5n+3n

C
0
n
50
50+1
+
C
1
n
51
51+1
+
C
2
n
52
52+1
+…+
C
n
n
5n
5n+1
2n5n
3n+5n
,n∈N.
点评:本题考查不等式的证明,着重考查等价转化思想与抽象思维、逻辑推理能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网