题目内容
证明下列不等式:
(1)对任意的正实数a,b,有
≥
-
;
(2)
•
+
•
+
•
+…+
•
≥
,n∈N.
(1)对任意的正实数a,b,有
1 |
1+a |
1 |
1+b |
a-b |
(1+b)2 |
(2)
C | 0 n |
50 |
50+1 |
C | 1 n |
51 |
51+1 |
C | 2 n |
52 |
52+1 |
C | n n |
5n |
5n+1 |
2n•5n |
3n+5n |
分析:(1)利用作差法证明即可;
(2)令a=
,可知
≥
-
(k=0,1,2,…,n)⇒
•
≥
•
-
,利用组合数的性质可证得右端=
-
[(1+
)n-b•2n],再令b=(
)n,可证左端
•
≥
-
[(1+
)n-(
)n]=
=
,从而可使结论得证.
(2)令a=
1 |
5k |
1 | ||
1+
|
1 |
1+b |
| ||
(1+b)2 |
n |
k=0 |
C | k n |
1 | ||
1+
|
n |
k=0 |
C | k n |
1 |
1+b |
n |
k=0 |
| ||
(1+b)2 |
2n |
1+b |
1 |
(1+b)2 |
1 |
5 |
3 |
5 |
n |
k=0 |
C | k n |
1 | ||
1+
|
2n | ||
1+
|
1 | ||
(1+
|
1 |
5 |
6 |
5 |
2n | ||
1+
|
2n•5n |
5n+3n |
解答:证明:(1)∵
-
+
=
+
=
,
∵a>0,b>0,
∴
≥0,
故
≥
-
;
(2)令a=
,k=0,1,2,…,n.由(1)得:
≥
-
,k=0,1,2,…,n
∴
•
≥
•
-
•
,k=0,1,2,…,n
∴
•
≥
•
-
=
-
(
-b)
=
-
(
•
-b
)
=
-
[(1+
)n-b•2n],
令b=(
)n,
则
•
≥
-
[(1+
)n-(
)n]=
=
,
即
•
+
•
+
•
+…+
•
≥
,n∈N.
1 |
1+a |
1 |
1+b |
a-b |
(1+b)2 |
b-a |
(1+a)(1+b) |
a-b |
(1+b)2 |
(b-a)2 |
(1+a)(1+b)2 |
∵a>0,b>0,
∴
(b-a)2 |
(1+a)(1+b)2 |
故
1 |
1+a |
1 |
1+b |
a-b |
(1+b)2 |
(2)令a=
1 |
5k |
1 | ||
1+
|
1 |
1+b |
| ||
(1+b)2 |
∴
C | k n |
1 | ||
1+
|
C | k n |
1 |
1+b |
C | k n |
| ||
(1+b)2 |
∴
n |
k=0 |
C | k n |
1 | ||
1+
|
n |
k=0 |
C | k n |
1 |
1+b |
n |
k=0 |
| ||
(1+b)2 |
=
1 |
1+b |
n |
k=0 |
C | k n |
1 |
(1+b)2 |
n |
k=0 |
C | k n |
1 |
5k |
=
2n |
1+b |
1 |
(1+b)2 |
n |
k=0 |
C | k n |
1 |
5k |
n |
k=0 |
C | k n |
=
2n |
1+b |
1 |
(1+b)2 |
1 |
5 |
令b=(
3 |
5 |
则
n |
k=0 |
C | k n |
1 | ||
1+
|
2n | ||
1+
|
1 | ||
(1+
|
1 |
5 |
6 |
5 |
2n | ||
1+
|
2n•5n |
5n+3n |
即
C | 0 n |
50 |
50+1 |
C | 1 n |
51 |
51+1 |
C | 2 n |
52 |
52+1 |
C | n n |
5n |
5n+1 |
2n•5n |
3n+5n |
点评:本题考查不等式的证明,着重考查等价转化思想与抽象思维、逻辑推理能力,属于难题.
练习册系列答案
相关题目