题目内容
关于的函数,有下列结论:
①、该函数的定义域是; ②、该函数是奇函数;
③、该函数的最小值为;
④、当 时为增函数,当时为减函数;
其中,所有正确结论的序号是 。
①④
解析试题分析: :①函数f(x)的定义域是(0,+∞),令>0,解得x>0,故定义域是(0,+∞),命题正确;
②函数f(x)是奇函数,由①知,定义域不关于原点对称,故不是奇函数,命题不正确;
③函数f(x)的最大值为-lg2,因为f(x)= =lg≤lg=-lg2,最大值是-lg2,故命题不正确;
④当0<x<1时,函数f(x)是增函数;当x>1时,函数f(x)是减函数,命题正确,因为f′(x)=lg,令导数大于0,可解得0<x<1,令导数大于0,得x>1,故命题正确.综上,①④正确,故答案为:①④
考点:本题主要考查了函数定义域、最值、单调性和奇偶性,同时考查了推理论证的能力以及计算论证的能力,属于中档题.
点评:解决该试题的关键是①根据对数函数的真数大于0,建立关系式解之验证定义域即可;②函数f(x)是奇函数,利用奇函数的定义进行判断;③函数f(x)的最大值为-lg2,利用基本不等式与对数的运算性质求出最值;④求出导数,解出单调区间,验证即可.
练习册系列答案
相关题目