题目内容

(理)如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).
①求直线A1E与平面CBED所成角的正弦值;
②求平面A1CD与平面A1BE所成锐角的余弦值;
③在线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?若存在,求出CP的值;若不存在,请说明理由.

【答案】分析:①建立空间直角坐标系,A1E与平面CBED所成角为θ,确定平面CBED的法向量利用向量的夹角公式,即可求直线A1E与平面CBED所成角的正弦值;
②求得平面A1CD的法向量为=(1,0,0),平面A1BE的法向量为=(2,1,),利用向量的夹角公式,即可求平面A1CD与平面A1BE所成锐角的余弦值;
③设线段BC上存在点P,设P点坐标为(0,a,0),则a∈[0,3],求出平面A1DP法向量为=(-3a,6,a)假设平面A1DP与平面A1BE垂直,则=0,由此可得结论.
解答:解:由题知DE⊥A1D,DE⊥CD,∴DE⊥平面A1CD,∴DE⊥A1C
又BC=3,AC=6,DE∥BC,DE=2,∴A1D=4,CD=2
又A1C⊥CD,∴且A1C⊥平面CBED
为x、y、z轴的正方向建立空间直角坐标系C-xyz,
则C(0,0,0),B(3,0,0),D(0,2,0),E(2,2,0),
①设A1E与平面CBED所成角为θ
∵平面CBED的法向量

∴A1E与平面CBED所成角的正弦值为…(7分)
②平面A1CD的法向量为=(1,0,0),
设平面A1BE的法向量为=(x,y,z)
=(3,0,-2),=(-1,2,0)
,∴可取=(2,1,
∴cos<>==
∴平面A1CD与平面A1BE所成锐角的余弦值为
③设线段BC上存在点P,设P点坐标为(0,a,0),则a∈[0,3]
=(0,a,-2),=(2,a,0)
设平面A1DP法向量为=(x1,y1,z1
,∴
=(-3a,6,a)
假设平面A1DP与平面A1BE垂直,则=0,
∴3a+12+3a=0,∴a=-2
∵0<a<3
∴不存在线段BC上存在点P,使平面A1DP与平面A1BE垂直.
点评:本题考查向量知识的运用,考查线面角、面面角,考查面面垂直,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网