题目内容
设数列{an}的各项均为正数,前n项和为Sn,已知4Sn=
+2an+1(n∈N*).
(1)证明数列{an}是等差数列,并求其通项公式;
(2)证明:对任意m、k、p∈N*,m+p=2k,都有
+
≥
;
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
a | 2n |
(1)证明数列{an}是等差数列,并求其通项公式;
(2)证明:对任意m、k、p∈N*,m+p=2k,都有
1 |
Sm |
1 |
Sp |
2 |
Sk |
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
(1)∵4Sn=
+2an+1,∴当n≥2时,4Sn-1=
+2an-1+1.
两式相减得4an=
-
+2an-2an-1,
∴(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
又4S1=
+2a1+1,∴a1=1,
∴{an}是以a1=1为首项,d=2为公差的等差数列.
∴an=2n-1;
(2)由(1)知Sn=
=n2,
∴Sm=m2,Sk=k2,Sp=p2,
于是
+
-
=
+
-
=
=
≥
=0,
∴
+
≥
;
(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,则Sn=na1+
d=
,
于是Sm+Sp-2Sk=ma1+
d+pa1+
d-[2ka1+k(k-1)d]
=(m+p)a1+
d-(2ka1+k2d-kd),
将m+p=2k代入得,Sm+Sp-2Sk=
d≥0,
∴Sm+Sp≥2Sk,
又SmSp=
=
≤
=
=
=
,
∴
+
=
≥
=
.
a | 2n |
a | 2n-1 |
两式相减得4an=
a | 2n |
a | 2n-1 |
∴(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
又4S1=
a | 21 |
∴{an}是以a1=1为首项,d=2为公差的等差数列.
∴an=2n-1;
(2)由(1)知Sn=
(1+2n-1)n |
2 |
∴Sm=m2,Sk=k2,Sp=p2,
于是
1 |
Sm |
1 |
Sp |
2 |
Sk |
1 |
m2 |
1 |
p2 |
2 |
k2 |
k2(p2+m2)-2m2p2 |
m2p2k2 |
=
(
| ||
m2p2k2 |
mp×2pm-2m2p2 |
m2p2k2 |
∴
1 |
Sm |
1 |
Sp |
2 |
Sk |
(3)结论成立,证明如下:
设等差数列{an}的首项为a1,公差为d,则Sn=na1+
n(n-1) |
2 |
n(a1+an) |
2 |
于是Sm+Sp-2Sk=ma1+
m(m-1) |
2 |
p(p-1) |
2 |
=(m+p)a1+
m2+p2-m-p |
2 |
将m+p=2k代入得,Sm+Sp-2Sk=
(m-p)2 |
4 |
∴Sm+Sp≥2Sk,
又SmSp=
mp(a1+am)(a1+ap) |
4 |
mp[
| ||
4 |
(
| ||||||
4 |
=
k2(a12+2a1ak+
| ||
4 |
k2(a1+ak)2 |
4 |
S | 2k |
∴
1 |
Sm |
1 |
Sp |
Sm+Sp |
SmSp |
2Sk | ||
|
2 |
Sk |
练习册系列答案
相关题目