题目内容

求函数y=sin(x+
π
6
)+sin(x-
π
6
)+cosx,x∈[0,π]
的单调区间、最大值和最小值.
f(x)=sinxcos
π
6
+cosxsin
π
6
+sinxcos
π
6
-cosxsin
π
6
+cosx

=2sinxcos
π
6
+cosx

=
3
sinx+cosx

=2sin(x+
π
6
)

由于x∈[0,π],得到x+
π
6
∈[
π
6
6
],
所以sin(x+
π
6
)的递增区间为
π
6
≤x+
π
6
π
2
,递减区间为
π
2
≤x+
π
6
6

所以f(x)单调增区间为[0,
π
3
]
,单调减区间为[
π
3
,π]

∵sin(x+
π
6
)的最大值为1,最小值为-
1
2

∴函数f(x)的最大值为2,最小值为-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网