题目内容
18、甲、乙、丙三名射击运动员在某场测试中各射击20次,3人的测试成绩如下表.
试根据以上数据,判断他们谁更优秀.
试根据以上数据,判断他们谁更优秀.
分析:根据题意,分别计算甲乙丙三个人的方差可得,甲的方差小于乙、丙的方差,结合方差的意义,可得甲最稳定.
解答:解:甲的平均数=(7×4+8×6+9×6+10×4)÷20=8.5
乙的平均数=(7×6+8×4+9×4+10×6)÷20=8.5
丙的平均数=(7×5+8×5+9×5+10×5)÷20=8.5
S甲2=[4×(7-8.5)2+6×(8-8.5)2+6×(9-8.5)2+4×(10-8.5)2]÷20=1.05
S乙2=[4×(8-8.5)2+6×(7-8.5)2+6×(10-8.5)2+4×(9-8.5)2]÷20=1.45
S乙丙2=[5×(7-8.5)2+5×(8-8.5)2+5×(9-8.5)2+5×(10-8.5)2]÷20=1.25
∵S甲2<S丙2<S乙2
故甲的成绩更优秀.
乙的平均数=(7×6+8×4+9×4+10×6)÷20=8.5
丙的平均数=(7×5+8×5+9×5+10×5)÷20=8.5
S甲2=[4×(7-8.5)2+6×(8-8.5)2+6×(9-8.5)2+4×(10-8.5)2]÷20=1.05
S乙2=[4×(8-8.5)2+6×(7-8.5)2+6×(10-8.5)2+4×(9-8.5)2]÷20=1.45
S乙丙2=[5×(7-8.5)2+5×(8-8.5)2+5×(9-8.5)2+5×(10-8.5)2]÷20=1.25
∵S甲2<S丙2<S乙2
故甲的成绩更优秀.
点评:本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为$\overline{x}$,则方差S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
练习册系列答案
相关题目