题目内容

已知椭圆Ω的离心率为
1
2
,它的一个焦点和抛物线y2=-4x的焦点重合.
(1)求椭圆Ω的方程;
(2)若椭圆
x2    
a2
+
 y2   
b2
=1(a>b>0)
上过点(x0,y0)的切线方程为
 x0x   
a2
+
y0y    
b2
=1

①过直线l:x=4上点M引椭圆Ω的两条切线,切点分别为A,B,求证:直线AB恒过定点C;
②是否存在实数λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,说明理由.
(1)设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),
抛物线y2=-4x的焦点是(-1,0),故c=1,
又∵
c
a
=
1
2
,∴a=2,b=
a2-c2
=
3

∴所求的椭圆Ω的方程为
x2
4
+
y2
3
=1

(2)①证明:设切点坐标为A(x1,y1),B(x2,y2),直线l上一点M的坐标(4,t),
则切线方程分别为
x1x
4
+
y1y
3
=1
x2x
4
+
y2y
3
=1

∵两切线均过M,即x1+
t
3
y1=1
x2+
t
3
y2=1

即点A,B的坐标都适合方程x+
t
3
y=1
而两点之间确定的唯一的一条直线,
∴直线AB的方程是x+
t
3
=1,
对任意实数t,点(1,0)都适合这个方程,
故直线恒过定点C(1,0).
②将直线AB的方程x+
t
3
y=1与椭圆方程联立,可得(
t2
3
+4
)y2-2ty-9=0
y1+y2=
6t
t2+12
y1y2=
-27
t2+12

不妨设y1>0,y2<0,则|AC|=
(x1-1)2+y12
=
t2+9
3
y1

同理|BC|=-
t2+9
3
y2

1
|AC|
+
1
|BC|
=
1
t2+9
144t2+9×144
9
=
4
3

即|AC|+|BC|=
4
3
•|AC|•|BC|,
故存在λ=
4
3
,使得|AC|+|BC|=λ•|AC|•|BC|.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网