题目内容
已知函数f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数且满足f(2013)=-1,则f(2014)=________.
1
由已知条件,得
f(2013)=asin(2013π+α)+bcos(2013π+β)
=asin(π+α)+bcos(π+β)
=-asinα-bcosβ
=-1,
∴asinα+bcosβ=1.
而f(2014)=asin(2014π+α)+bcos(2014π+β)
=asinα+bcosβ
=1.
f(2013)=asin(2013π+α)+bcos(2013π+β)
=asin(π+α)+bcos(π+β)
=-asinα-bcosβ
=-1,
∴asinα+bcosβ=1.
而f(2014)=asin(2014π+α)+bcos(2014π+β)
=asinα+bcosβ
=1.
练习册系列答案
相关题目