题目内容

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
与椭圆
x2
25
+
y2
9
=1
的焦点相同,若过右焦点F且倾斜角为60°的直线与双曲线的右支有两个不同交点,则此双曲线实半轴长的取值范围是(  )
A、(2,4)
B、(2,4]
C、[2,4)
D、(2,+∞)
分析:要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,即
b
a
<1,求得a和b的不等式关系,进而根据b=
c2-a2
转化成a和c的不等式关系,求得离心率的一个范围,最后根据双曲线的离心率大于1,综合可得求得e的范围.
解答:解:椭圆
x2
25
+
y2
9
=1
的半焦距c=4.
要使直线与双曲线有两个交点,需使双曲线的其中一渐近线方程的斜率小于直线的斜率,
b
a
<tan60°=
3

即b<
3
a
c2-a2
3
a,
整理得c<2a
∴a>2,
又a<c=4
则此双曲线实半轴长的取值范围是(2,4)
故选A.
点评:本题主要考查了双曲线的简单性质、圆锥曲线的共同特征.在求双曲线实半轴长的取值范围时,注意其值要小于4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网