题目内容
如图,已知点O是边长为1的等边△ABC的中心,则(
+
)•(
+
)等于( )
OA |
OB |
OA |
OC |
分析:由题意求出|
|,|
|, |
|的长度,推出夹角大小,直接利用向量的数量积求解即可.
OA |
OB |
OC |
解答:解:因为点O是边长为1的等边△ABC的中心,D为BC的中点,
,
,
两两夹角为120°.
所以|
|=|
|=|
|=
|AD|=
×
=
.
所以(
+
)•(
+
)
=
2+
•
+
•
+
•
=(
)2+(
)2cos120°+(
)2cos120°+(
)2cos120°
=(
)2(1+3cos120°)
=-
.
故选D.
OA |
OC |
OB |
所以|
OA |
OB |
OC |
2 |
3 |
2 |
3 |
| ||
2 |
| ||
3 |
所以(
OA |
OB |
OA |
OC |
=
OA |
OB |
OA |
OA |
OC |
OB |
OC |
=(
| ||
3 |
| ||
3 |
| ||
3 |
| ||
3 |
=(
| ||
3 |
=-
1 |
6 |
故选D.
点评:本题考查向量的数量积的运算,利用条件求出|
|=|
|=|
|的值,已经向量的夹角是解题的关键.
OA |
OB |
OC |
练习册系列答案
相关题目