题目内容

已知sin(
π
4
-x)=
12
13
,且0<x<
π
4
,求
cos2x
cos(
π
4
+x)
分析:利用同角三角函数的基本关系求得cos(
π
4
-x)的值,再利用诱导公式和二倍角公式求得cos2x的值,再由诱导公式求得cos(
π
4
+x)的值,从而求得
cos2x
cos(
π
4
+x)
的值.
解答:解:由sin(
π
4
-x)=
12
13
,0<x<
π
4
,得 0<
π
4
-x<
π
4

cos(
π
4
-x)=
1-sin2(
π
4
-x)
=
5
13
,…(4分)
cos2x=sin(
π
2
-2x)=2sin(
π
4
-x)cos(
π
4
-x)=
120
169
,…(8分)
而cos(
π
4
+x)=sin[
π
2
-(
π
4
-x)]=sin(
π
4
-x)=
12
13

cos2x
cos(
π
4
+x)
=
10
13
.…(12分)
点评:本题主要考查同角三角函数的基本关系,两角和差的正弦、余弦公式,二倍角公式的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网