题目内容
【题目】在直角坐标系xOy中,已知直线l1:y=tanαx(0≤a<π,α ),抛物线C: (t为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系 (Ⅰ)求直线l1和抛物线C的极坐标方程;
(Ⅱ)若直线l1和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2 , l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.
【答案】解:(Ⅰ)∵直线l1:y=tanαx(0≤a<π,α ), ∴直线l1是过原点且倾斜角为α 的直线,
其极坐标方程为θ=α( ),
抛物线C的普通方程为y2=4x,
其极坐标方程为(ρsinθ)2=4ρcosθ,
化简得ρsin2θ=4cosθ.
(Ⅱ)由直线l1和抛物线C有两个交点知α≠0,
把θ=α代入ρsin2θ=4cosθ,得ρA= ,
可知直线l2的极坐标方程为 ,(ρ∈R),
代入ρsin2θ=4cosθ,得ρBcos2α=﹣4sinα,
所以ρB=﹣ ,
= = ≥16,
∴△OAB的面积的最小值为16.
【解析】(Ⅰ)直线l1是过原点且倾斜角为α 的直线,抛物线C的普通方程为y2=4x,由此能求出直线l1和抛物线C的极坐标方程.(Ⅱ)由直线l1和抛物线C有两个交点知α≠0,把θ=α代入ρsin2θ=4cosθ,得ρA= ,直线l2的极坐标方程为 ,(ρ∈R),代入ρsin2θ=4cosθ,求出ρB=﹣ ,由此能求出△OAB的面积的最小值.
【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:
分组(岁) | 频数 |
[25,30) | x |
[30,35) | y |
[35,40) | 35 |
[40,45) | 30 |
[45,50] | 10 |
合计 | 100 |
(Ⅰ)求频率分布表中x、y的值,并补全频率分布直方图;
(Ⅱ)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人重随机抽取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:
组数 | 分组(单位:岁) | 频数 | 频率 |
1 | [20,25) | 5 | 0.05 |
2 | [25,30) | 20 | 0.20 |
3 | [30,35) | a | 0.35 |
4 | [35,40) | 30 | b |
5 | [40,45] | 10 | 0.10 |
合计 | n | 1.00 |
(1)求出表中的a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[35,40)的人数为ξ,求ξ的分布列及数学期望.