题目内容
已知数列是首项为1,公差为2的等差数列,数列的前n项和.
(I)求数列的通项公式;
(II)设, 求数列的前n项和.
【答案】
(Ⅰ).(Ⅱ)由(Ⅰ).
【解析】
试题分析:(Ⅰ)根据.得到.
从而通过确定,当时,,验证也适合上式,得到所求通项公式.
(Ⅱ)利用“裂项相消法”求和.难度不大,对基础知识的考查较为全面.
试题解析:(Ⅰ)由已知,. 2分
所以.从而
当时,,
又也适合上式,所以. 6分
(Ⅱ)由(Ⅰ), 8分
所以
. 12分
考点:等差数列的通项公式,裂项相消法.
练习册系列答案
相关题目