题目内容

关于x的不等式(2ax-1)lnx≥0对任意x∈(0,+∞)恒成立,则实数a的值为________.


分析:依题意,对x∈(0,1],x∈[1,+∞)分类讨论,构造f(x)=,利用函数的单调性即可求得实数a的值.
解答:∵(2ax-1)lnx≥0对任意x∈(0,+∞)恒成立,
∴当x∈(0,1]时,lnx≤0,
∴2ax-1≤0,
∴a≤(0<x≤1),
令f(x)=,则f(x)在(0,1]上单调递减,
∴f(x)min=f(1)=
∴a≤.①
当x∈[1,+∞)时,lnx≥0,
∴(2ax-1)lnx≥0对任意x∈(0,+∞)恒成立?2ax-1≥0对任意x∈(0,+∞)恒成立,
同理可求a≥f(x)max=f(1)=.②
由①②得:a=
故答案为:
点评:本题考查函数恒成立问题,考查构造函数与分类讨论思想,考查函数的单调性,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网