题目内容
已知等比数列{an}各项都是正数,a1=3,a1+a2+a3=21,Sn为{an}的前n项和,
(Ⅰ)求通项an及Sn;
(Ⅱ)设{bn-an}是首项为1,公差为3的等差数列,求数列{bn}的通项公式及其前n项和Tn.
(Ⅰ)求通项an及Sn;
(Ⅱ)设{bn-an}是首项为1,公差为3的等差数列,求数列{bn}的通项公式及其前n项和Tn.
分析:(Ⅰ)设等比数列{an}的公比为q,代入已知可得关于q的方程,解之可得q,代入等比数列的通项公式和求和公式可得;(Ⅱ)可得bn=3×2n-1+3n-2,分别由等差数列和等比数列的求和公式可得.
解答:解:(Ⅰ)设等比数列{an}的公比为q,则q>0,
代入已知可得3+3q+3q2=21,解得q=2,或q=-3(舍去),
故an=3×2n-1,Sn=
=3×2n-1-3;
(Ⅱ)∵{bn-an}是首项为1,公差为3的等差数列,
∴bn-an=1+3(n-1)=3n-2,即bn=3×2n-1+3n-2
故Tn=3(1+2+22+…+2n-1)+(1+4+7+…+3n-2)
=
+
=3×2n-3+
代入已知可得3+3q+3q2=21,解得q=2,或q=-3(舍去),
故an=3×2n-1,Sn=
3(1-2n) |
1-2 |
(Ⅱ)∵{bn-an}是首项为1,公差为3的等差数列,
∴bn-an=1+3(n-1)=3n-2,即bn=3×2n-1+3n-2
故Tn=3(1+2+22+…+2n-1)+(1+4+7+…+3n-2)
=
3(1-2n) |
1-2 |
n(1+3n-2) |
2 |
3n2-n |
2 |
点评:本题考查等比数列和等差数列的求和公式,属中档题.
练习册系列答案
相关题目