题目内容
设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求证:a>0且-2<b | a |
分析:先将f(0)>0,f(1)>0,利用函数式中的a,b,c进行表示,再结合等式关系利用不等式的基本性质即可得到a和
的范围即可.
a |
b |
解答:证明:f(0)>0,∴c>0,
又∵f(1)>0,即3a+2b+c>0.①
而a+b+c=0即b=-a-c代入①式,
∴3a-2a-2c+c>0,即a-c>0,∴a>c.
∴a>c>0.又∵a+b=-c<0,∴a+b<0.
∴1+
<0,∴
<-1.
又c=-a-b,代入①式得,
3a+2b-a-b>0,∴2a+b>0,
∴2+
>0,∴
>-2.故-2<
<-1.
又∵f(1)>0,即3a+2b+c>0.①
而a+b+c=0即b=-a-c代入①式,
∴3a-2a-2c+c>0,即a-c>0,∴a>c.
∴a>c>0.又∵a+b=-c<0,∴a+b<0.
∴1+
b |
a |
b |
a |
又c=-a-b,代入①式得,
3a+2b-a-b>0,∴2a+b>0,
∴2+
b |
a |
b |
a |
b |
a |
点评:本题主要考查二次函数的基本性质与不等式的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目