题目内容

设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.
(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.,求ξ分布列;
(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=
5
3
,Dη=
5
9
,求a:b:c.
(1)由题意得ξ=2,3,4,5,6,
P(ξ=2)=
3×3
6×6
=
1
4
;P(ξ=3)=
2×3×2
6×6
=
1
3
;P(ξ=4)=
2×3×1+2×2
6×6
=
5
18

P(ξ=5)=
2×2×1
6×6
=
1
9
;P(ξ=6)=
1×1
6×6
=
1
36

故所求ξ的分布列为
 ξ  2  3  4  5  6
 P  
1
4
 
1
3
 
5
18
 
1
9
 
1
36
(2)由题意知η的分布列为
 η  1  2  3
 P  
a
a+b+c
 
b
a+b+c
 
c
a+b+c
Eη=
a
a+b+c
+
2b
a+b+c
+
3c
a+b+c
=
5
3

Dη=(1-
5
3
2
a
a+b+c
+(2-
5
3
2 
b
a+b+c
+(3-
5
3
2 
c
a+b+c
=
5
9

2a-b-4c=0
a+4b-11c=0

解得a=3c,b=2c,
故a:b:c=3:2:1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网