题目内容

已知椭圆,F1,F2为其左、右焦点,P为椭圆C上任一点,的重心为G,内心I,且有(其中为实数),椭圆C的离心率e=(   )

A.              B.               C.               D.

 

【答案】

A

【解析】

试题分析:设P(),∵G为的重心,∴G点坐标为 G(),∵,∴IG∥x轴,∴I的纵坐标为,在焦点中, =2c,∴=??,又∵I为的内心,∴I的纵坐标即为内切圆半径,内心I把分为三个底分别为的三边,高为内切圆半径的小三角形,∴ =,∴?? =?2c? =,∴2c=a,∴椭圆C的离心率e=,故选A

考点:本题考查了离心率的求法

点评:求解椭圆中的离心率时往往用到椭圆的概念,此类问题还用到重心坐标公式,三角形内心的意义及其应用

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网