题目内容
已知椭圆,F1,F2为其左、右焦点,P为椭圆C上任一点,的重心为G,内心I,且有(其中为实数),椭圆C的离心率e=( )
A. B. C. D.
【答案】
A
【解析】
试题分析:设P(),∵G为的重心,∴G点坐标为 G(),∵,∴IG∥x轴,∴I的纵坐标为,在焦点中,, =2c,∴=??,又∵I为的内心,∴I的纵坐标即为内切圆半径,内心I把分为三个底分别为的三边,高为内切圆半径的小三角形,∴ =(),∴?? =()即?2c? =(),∴2c=a,∴椭圆C的离心率e=,故选A
考点:本题考查了离心率的求法
点评:求解椭圆中的离心率时往往用到椭圆的概念,此类问题还用到重心坐标公式,三角形内心的意义及其应用
练习册系列答案
相关题目