题目内容
已知△ABC的三个顶点均在椭圆4x2+5y2=80上,且点A在y轴的正半轴上.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.
(Ⅰ)设B(x1,y1),C(x2,y2).
整理椭圆方程得
+
=1,∴短轴b=4,a=2
∴c=
=2,
则A(0,4 ),F1(2,0)
∴
=2,x1+x2=6
同理y1+y2=-4
又
+
=1,
+
=1,
两式相减可得4(x1+x2)+5(y1+y2)×k=0,
∴k=
(k为BC斜率)
令BC直线为:y=
x+b,则y1+y2=
(x1+x2)+2b
∴b=-
∴BC直线方程为:y=
x-
即5y-6x+28=0.…(7分)
(Ⅱ)由AB⊥AC,得
•
=x1x2+y1y2-4(y1+y2)+16=0 (1)
设直线BC方程为y=kx+b代入4x2+5y2=80,得(4+5k2)x2+10bkx+5b2-80=0
∴x1+x2=
,x1x2=
∴y1+y2=k(x1+x2)+2b=
,y1y2=k2x1x2+kb(x1+x2)+b2=
代入(1)式得,
=0,
解得b=4(舍)或b=-
故直线BC过定点(0,-
).
整理椭圆方程得
x2 |
20 |
y2 |
16 |
5 |
∴c=
20-16 |
则A(0,4 ),F1(2,0)
∴
0+x1+x2 |
3 |
同理y1+y2=-4
又
x12 |
20 |
y12 |
16 |
x22 |
20 |
y22 |
16 |
两式相减可得4(x1+x2)+5(y1+y2)×k=0,
∴k=
6 |
5 |
令BC直线为:y=
6 |
5 |
6 |
5 |
∴b=-
28 |
5 |
∴BC直线方程为:y=
6 |
5 |
28 |
5 |
即5y-6x+28=0.…(7分)
(Ⅱ)由AB⊥AC,得
AB |
AC |
设直线BC方程为y=kx+b代入4x2+5y2=80,得(4+5k2)x2+10bkx+5b2-80=0
∴x1+x2=
-10kb |
4+5k2 |
5b2-80 |
4+5k2 |
∴y1+y2=k(x1+x2)+2b=
8k |
4+5k2 |
4b2-80k2 |
4+5k2 |
代入(1)式得,
9b2-32b-16 |
4+5k2 |
解得b=4(舍)或b=-
4 |
9 |
故直线BC过定点(0,-
4 |
9 |
练习册系列答案
相关题目