题目内容
德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数
被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:
①; ②函数是偶函数;
③任取一个不为零的有理数,对任意的恒成立;
④存在三个点,使得为等边三角形.
其中真命题的个数是( )
被称为狄利克雷函数,其中为实数集,为有理数集,则关于函数有如下四个命题:
①; ②函数是偶函数;
③任取一个不为零的有理数,对任意的恒成立;
④存在三个点,使得为等边三角形.
其中真命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
C
试题分析:由题意知,,故,故①是假命题;当时,,则;当时,,则,故函数是偶函数,②是真命题;任取一个一个不为零的有理数,都有,故③是真命题;取点,,
,是等边三角形,故④是真命题.
练习册系列答案
相关题目