题目内容

(2013•广东)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=
a
2
n+1
-4n-1,n∈N*
,且a2,a5,a14构成等比数列.
(1)证明:a2=
4a1+5

(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
1
a1a2
+
1
a2a3
+…+
1
anan+1
1
2
分析:(1)对于4Sn=
a
2
n+1
-4n-1,n∈N*
,令n=1即可证明;
(2)利用4Sn=
a
2
n+1
-4n-1,n∈N*
,且4Sn-1=
a
2
n
-4(n-1)-1
,(n≥2),两式相减即可求出通项公式.
(3)由(2)可得
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
.利用“裂项求和”即可证明.
解答:解:(1)当n=1时,4a1=
a
2
2
-5,
a
2
2
=4a1+5

an>0∴a2=
4a1+5

(2)当n≥2时,满足4Sn=
a
2
n+1
-4n-1,n∈N*
,且4Sn-1=
a
2
n
-4(n-1)-1

4an=4Sn-4Sn-1=
a
2
n+1
-
a
2
n
-4

a
2
n+1
=
a
2
n
+4an+4=(an+2)2

∵an>0,∴an+1=an+2,
∴当n≥2时,{an}是公差d=2的等差数列.
∵a2,a5,a14构成等比数列,∴
a
2
5
=a2a14
(a2+6)2=a2•(a2+24),解得a2=3,
由(1)可知,4a1=
a
2
2
-5=4
,∴a1=1∵a2-a1=3-1=2,
∴{an}是首项a1=1,公差d=2的等差数列.
∴数列{an}的通项公式an=2n-1.
(3)由(2)可得式
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

1
a1a2
+
1
a2a3
+…+
1
anan+1
=
1
1•3
+
1
3•5
+
1
5•7
+…+
1
(2n-1)(2n+1)

=
1
2
•[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+(
1
2n-1
-
1
2n+1
)]
=
1
2
•[1-
1
2n+1
]<
1
2
.
点评:熟练掌握等差数列与等比数列的通项公式、“裂项求和”、通项与前n项和的关系an=Sn-Sn-1(n≥2)是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网