题目内容
(2013•广东)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=
-4n-1,n∈N*,且a2,a5,a14构成等比数列.
(1)证明:a2=
;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
+
+…+
<
.
a | 2 n+1 |
(1)证明:a2=
4a1+5 |
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
1 |
2 |
分析:(1)对于4Sn=
-4n-1,n∈N*,令n=1即可证明;
(2)利用4Sn=
-4n-1,n∈N*,且4Sn-1=
-4(n-1)-1,(n≥2),两式相减即可求出通项公式.
(3)由(2)可得
=
=
(
-
).利用“裂项求和”即可证明.
a | 2 n+1 |
(2)利用4Sn=
a | 2 n+1 |
a | 2 n |
(3)由(2)可得
1 |
anan+1 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
解答:解:(1)当n=1时,4a1=
-5,
=4a1+5,
∵an>0∴a2=
(2)当n≥2时,满足4Sn=
-4n-1,n∈N*,且4Sn-1=
-4(n-1)-1,
∴4an=4Sn-4Sn-1=
-
-4,
∴
=
+4an+4=(an+2)2,
∵an>0,∴an+1=an+2,
∴当n≥2时,{an}是公差d=2的等差数列.
∵a2,a5,a14构成等比数列,∴
=a2•a14,(a2+6)2=a2•(a2+24),解得a2=3,
由(1)可知,4a1=
-5=4,∴a1=1∵a2-a1=3-1=2,
∴{an}是首项a1=1,公差d=2的等差数列.
∴数列{an}的通项公式an=2n-1.
(3)由(2)可得式
=
=
(
-
).
∴
+
+…+
=
+
+
+…+
a | 2 2 |
a | 2 2 |
∵an>0∴a2=
4a1+5 |
(2)当n≥2时,满足4Sn=
a | 2 n+1 |
a | 2 n |
∴4an=4Sn-4Sn-1=
a | 2 n+1 |
a | 2 n |
∴
a | 2 n+1 |
a | 2 n |
∵an>0,∴an+1=an+2,
∴当n≥2时,{an}是公差d=2的等差数列.
∵a2,a5,a14构成等比数列,∴
a | 2 5 |
由(1)可知,4a1=
a | 2 2 |
∴{an}是首项a1=1,公差d=2的等差数列.
∴数列{an}的通项公式an=2n-1.
(3)由(2)可得式
1 |
anan+1 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
1 |
1•3 |
1 |
3•5 |
1 |
5•7 |
1 |
(2n-1)(2n+1) |
|
点评:熟练掌握等差数列与等比数列的通项公式、“裂项求和”、通项与前n项和的关系an=Sn-Sn-1(n≥2)是解题的关键.
练习册系列答案
相关题目