题目内容

已知sin4α+cos4α=
1725
,α∈R,则sin2α的值等于
 
分析:利用配方法把sin4+cos4α转化为(sin2a+cos2a)2-2sin2+cos2α利用同角三角函数基本关系的应用和二倍角公式求得答案.
解答:解:由sin4α+cos4α=
17
25
,有(sin2a+cos2a)2-2sin2α•cos2α=
17
25

2sin2αcos2α=
8
25
(a∈R)
sin22a=
16
25
,从而sin2a=
4
5

故答案为:
4
5
点评:本题主要考查而来三角函数的化简求值,同角三角函数基本关系的应用.解题的关键是灵活利用三角函数中的平方关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网