题目内容
双曲线-=1(a>0,b>0)的一条渐近线方程为y=x,则有
A.a=2b B.b=a C.b=2a D.a=b
A
【解析】略
F1、F2是双曲线-=1的两个焦点,点P在双曲线上,G是PF1的中点,且PF1⊥PF2,则△GF1F2的面积是
[ ]
F
2
3
设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2-y2=1的两条切线PA、PB,切点为A、B,定点.
(1)求证:三点A、M、B共线.
(2)过点A作直线x-y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.
.已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.