题目内容

已知f(x)是偶函数,且在(-∞,0]上单调递减,对任意x∈R,x≠0,都有
(Ⅰ)指出f(x)在[0,+∞)上的单调性(不要求证明),并求f(1)的值;
(Ⅱ)k为常数,-1<k<1,解关于x的不等式
【答案】分析:(Ⅰ)先利用偶函数的图象特点判断出f(x)在[0,+∞)上的单调性;再利用赋值法把1代入即可求出f(1)的值;
(Ⅱ)利用偶函数的性质以及f(1)的值,可以先把转化为,进而得到,⇒(1-k2)x2-6kx<0;再对二此项系数进行讨论即可解不等式.
解答:解:(Ⅰ)f(x)在[0,+∞)上是增函数,

∴f(1)+f(1)=-1+2log2(1+1)=1,

(Ⅱ)因为f(x)是偶函数,所以
不等式就是,∵f(x)在[0,+∞)上递增,∴
k2x2+6kx+9>x2+9.∴(1-k2)x2-6kx<0,
①若k=0,则x2<0,∴不等式解集为ϕ;
②若-1<k<0,则,∴不等式解集为
③若0<k<1,则,∴不等式解集为
点评:本题主要考查函数单调性和奇偶性的综合应用问题.偶函数的图象特点是在关于原点对称的区间上单调性相反;而奇函数的图象特点是在关于原点对称的区间上单调性相同.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网