题目内容
已知函数,,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
【答案】
(1)(2)
【解析】
试题分析:解:∵,其定义域为,
∴.
∵是函数的极值点,∴,
即.
∵,∴.
(2) 对任意的都有≥成立等价于对任意的
都有≥.
当[1,]时,.
∴函数在上是增函数.
∴.
∵,且,.
①当且[1,]时,,
∴函数在[1,]上是增函数,
∴.
由≥,得≥,
又,∴不合题意.
②当1≤≤时,
若1≤<,则,
若<≤,则.
∴函数在上是减函数,在上是增函数.
∴.
由≥,得≥,
又1≤≤,∴≤≤.
③当且[1,]时,,
∴函数在上是减函数.∴.
由≥,得≥,
又,∴.
综上所述,的取值范围为.
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。
练习册系列答案
相关题目