题目内容

{an}是等差数列,若a1,a3,a4是等比数列{bn}的连续三项,则{bn}的公比为   
【答案】分析:{an}是等差数列,推出a3=a1+2d,a4=a1+3d,利用a1,a3,a4是等比数列{bn}的连续三项,得到(a1+2d)2=a1(a1+3d),求出d=-4a1或d=0.然后求出{bn}的公比q即可.
解答:解:∵{an}是等差数列,设公差为d,则a3=a1+2d,a4=a1+3d
∵a1,a3,a4是等比数列{bn}的连续三项,
∴a32=a1×a4
即(a1+2d)2=a1(a1+3d),
解得a1=-4d,或d=0
当a1=-4d时,{bn}的公比q===
当d=0时,{bn}的公比q==1
∴{bn}的公比为或1
故答案为:或1
点评:本题考查了等差数列的定义及其通项公式,等比数列的定义及其通项公式,公比的定义及其性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网