题目内容
各项均为正数的数列{an}中,前n项和Sn=(
)2.
(1)求数列{an}的通项公式;
(2)若
+
+…+
<k恒成立,求k的取值范围.
an+1 |
2 |
(1)求数列{an}的通项公式;
(2)若
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
分析:(1)由Sn=(
)2,知Sn-1=(
)2 ,n≥2,由此得an=(
)2-(
)2,n≥2,从则能够求出an=2n-1.
(2)由题意得k>(
+
+…+
)max,由
=
=
(
-
),由此利用裂项求和法能够证明k≥
.
an+1 |
2 |
an-1+1 |
2 |
an+1 |
2 |
an-1+1 |
2 |
(2)由题意得k>(
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
1 |
anan+1 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
1 |
2 |
解答:解:(1)∵Sn=(
)2,∴Sn-1=(
)2 ,n≥2,
两式相减,得an=(
)2-(
)2,n≥2,
整理,得(an+an-1)(an-an-1-2)=0,
∵数列{an}的各项均为正数,
∴an-an-1 =2,n≥2,
∴{an}是公差为2的等差数列,
又∵S1=(
)2,得a1=1,
∴an=2n-1.
(2)由题意得k>(
+
+…+
)max,
∵
=
=
(
-
),
∴
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)<
,
∴k≥
.
an+1 |
2 |
an-1+1 |
2 |
两式相减,得an=(
an+1 |
2 |
an-1+1 |
2 |
整理,得(an+an-1)(an-an-1-2)=0,
∵数列{an}的各项均为正数,
∴an-an-1 =2,n≥2,
∴{an}是公差为2的等差数列,
又∵S1=(
a1+1 |
2 |
∴an=2n-1.
(2)由题意得k>(
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
∵
1 |
anan+1 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
∴
1 |
a1a2 |
1 |
a2a3 |
1 |
anan+1 |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
1 |
2 |
∴k≥
1 |
2 |
点评:本题考查数列的通项公式的求法,考查不等式恒成立时实数的取值范围的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目