题目内容

若sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
,则m的值为(  )
分析:利用同角三角函数间的基本关系列出方程,求出方程的解即可得到m的值.
解答:解:∵sinθ=
m-3
m+5
,cosθ=
4-2m
m+5

∴sin2θ+cos2θ=1,即(
m-3
m+5
2+(
4-2m
m+5
2=1,
整理得:m2-6m+9+16-16m+4m2=m2+10m+25,即m2-8m=0,
解得:m=0或m=8,
经检验是分式方程的解,
则m的值是0或8.
故选C
点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网