题目内容

已知命题“若m<0,则方程x2+x+m=0有实根”,则原命题、逆命题、否命题、逆否命题、命题的否定这五个命题中,正确的个数是______.
原命题为:“若m<0,则方程x2+x+m=0有实根”,因为方程的判别式为△=1-4m,∴m<0时,△>0,∴方程x2+x+m=0有实根,故命题为真;
逆否命题为:“若方程x2+x+m=0没有实根,则m≥0”,根据原命题与逆否命题,真假一致,可知命题为真;
逆命题为:“若方程x2+x+m=0有实根,则m<0”,因为方程有实根,所以判别式△=1-4m≥0,∴m≤
1
4
,显然m<0不一定成立,故命题为假;
否命题为:“若m≥0,则方程x2+x+m=0没有实根”,根据否命题与逆命题,真假一致,可知命题为假;
命题的否定为:“若m<0,则方程x2+x+m=0没有实根”,因为方程的判别式为△=1-4m,∴m<0时,△>0,∴方程x2+x+m=0有实根,故命题为假;
故正确的命题有2个
故答案为:2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网