题目内容

已知双曲线=1的右焦点是F,右顶点是A,虚轴的上端点是B,·=6-4,∠BAF=150°.

(1)求双曲线的方程;

(2)设Q是双曲线上的点,且过点F、Q的直线l与y轴交于点M,若+2=0,求直线l的斜率.

(1)(2)k=±


解析:

(1)由条件知A(a,0),B(0,b),F(c,0)

·=(-a, b)·(c-a,0)=a(a-c)=6-4

·

 

·

 
cos∠BAF=

=-=cos150°=-.

∴a=c,代入a(a-c)=6-4中得c=2.

∴a=,b2=c2-a2=2,故双曲线的方程为.

(2)∵点F的坐标为(2,0).

∴可设直线l的方程为y=k(x-2),

令x=0,得y=-2k,即M(0,-2k)

设Q(m,n),则由+2=0得

(m,n+2k)+2(2-m,-n)=(0,0).

即(4-m,2k-n)=(0,0).

,∵.

=1,得k2=,k=±.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网